Biosorption of Cu²⁺ Metal Ions Using Immobilized Green Algae (Spirogyra Setiformis) Biomass with Sodium Silicate
DOI:
https://doi.org/10.55927/fjas.v4i10.396Keywords:
Biosorption, Metal Ion, Green Algae, Immobilization, Sodium SilicateAbstract
This study aims to evaluate the performance of Spirogyra setiformis biomass immobilized with sodium silicate as a biosorbent for the removal of Cu²⁺ ions from aqueous solutions. The research investigates the effects of pH, initial ion concentration, and flow rate as independent variables, while adsorption capacity serves as the dependent variable. A column system was employed, with biosorbent characterization conducted using Fourier Transform Infrared Spectroscopy (FTIR) and adsorption capacity analyzed through Atomic Absorption Spectrophotometry (AAS) during the observation period. The results showed that the immobilized Spirogyra exhibited good stability, significant Cu²⁺ adsorption capacity, and reusability over several cycles. Application to real wastewater samples also demonstrated high effectiveness, indicating its potential as a sustainable and low-cost biosorbent for heavy metal remediation in aquatic environments.
References
Alobaidi DS, Alwared AI. Role of immobilised Chlorophyta algae in form of calcium alginate beads for the removal of phenol: isotherm, kinetic and thermodynamic study. Heliyon 2023;9: e14851.
Anwar M, Munaf E, Kosela S, Wibowo W, Zainul R. Journal of Chemical and Pharmaceutical Research, 2015, 7 (11): 715-722 Research Article Study of Pb (II) biosorption from aqueous solution using immobilized Spirogyra subsalsa b iomass 2015;7:715–22.
Areco MM, Hanela S, Duran J, dos Santos Afonso M. Biosorption of Cu (II), Zn (II), Cd (II) and Pb (II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. J Hazard Mater 2012;213–214:123–32.
Arif MD, Mawardi. Pengaruh Konsentrasi Awal Larutan Terhadap Penyerapan Ion Logam Cr+6 Menggunakan Biomassa Alga Hijau Mougeotia Sp yang Diimobilisasi Dengan Natrium Silika. Chem J Univ Negeri Padang 2020; 9:50–4.
Bazzazzadeh R, Soudi MR, Valinassab T, Moradlou O. Kinetics and equilibrium studies on biosorption of hexavalent chromium from leather tanning wastewater by Sargassum tenerrimum from Chabahar-Bay Iran. Algal Res 2020; 48:101896. https://doi.org/10.1016/j.algal.2020.101896.
Buhani B, Suharso S, Sembiring Z. BIOSORPTION OF METAL IONS Pb (II), Cu (II), AND Cd (II) ON Sargassum duplicatum IMMOBILIZED SILICA GEL MATRIX. Indones J Chem 2010; 6:245–50.
Dewata I, Denhas YH. Pencemaran Lingkungan, PT. RajaGrafindo Persada-Rajawali Pers; 2023.
Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. J Environ Manage 2011; 92:407–18.
Gu S, Lan CQ. Biosorption of heavy metal ions by green alga Neochloris oleoabundans: Effects of metal ion properties and cell wall structure. J Hazard Mater 2021; 418:126336.
Gupta VK, Rastogi A, Saini VK, Jain N. Corrigendum to “Biosorption of copper (II) from aqueous solutions by Spirogyra species” [J. Colloid Interface Sci. 296 (2006) 59-63] (DOI: 10.1016/j.cis.2005.08.033). J Colloid Interface Sci 2008; 325:294. https://doi.org/10.1016/j.jcis.2008.05.020.
Han M, Zhang C, Ho SH. Immobilized microalgal system: An achievable idea for upgrading current microalgal wastewater treatment. Environ Sci Ecotechnology 2023; 14:100227. https://doi.org/10.1016/j.ese.2022.100227.
Hayuwardini A, Mulyani B. PEMANFAATAN ARANG AMPAS TEBU (BAGASSE) SEBAGAI ADSORBEN LARUTAN CAMPURAN ION Pb 2 + DAN Cu 2 +. Semin Nas Kim Dan Pendidik Kim Xiii 2022:110–20.
He J, Chen JP. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour Technol 2014; 160:67–78. https://doi.org/10.1016/j.biortech.2014.01.068.
Kaewsarn P. Biosorption of copper (II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere 2002; 47:1081–5. https://doi.org/10.1016/S0045-6535(01)00324-1.
Kajeiou M, Alem A, Mezghich S, Ahfir ND, Mignot M, Devouge-Boyer C, et al. Competitive and non-competitive zinc, copper and lead biosorption from aqueous solutions onto flax fibers. Chemosphere 2020; 260:127505. https://doi.org/10.1016/j.chemosphere.2020.127505.
Kajian biosorpsi..., Mawardi, FMIPA UI, 2008. 2008.
Karlina H, Mawardi. Pengaruh Konsentrasi Awal Larutan Ion Logam Cr+6 Terhadap Penyerapan Biomassa Alga Hijau Mougeotia sp. yang Dimodifikasi Metanol. Chem J Univ Negeri Padang 2020; 9:19–25.
Khamayseh MM, Kidak R. Biosorption of reactive amoxicillin antibiotic on Pithophora macroalgae in aqueous solution: Equilibrium and kinetic studies. Desalin Water Treat 2024; 320:100669.
Lee YC, Chang SP. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol 2011; 102:5297–304. https://doi.org/10.1016/j.biortech.2010.12.103.
Li Y, Hao R, Shan B, Li J, Ye Y, Zhang J, et al. Reduction and fixation of Cr (VI) by Aspergillus niger along with bentonite-sodium alginate beads. Desalin Water Treat 2022; 276:185–94. https://doi.org/10.5004/dwt.2022.28944.
Mawardi M. Biosorpsi Kation Tembaga (II) dan Seng (II) oleh Biomassa Alga Hijau Spirogyra subsalsa. Biota J Ilm Ilmu-Ilmu Hayati 2011; 16:269–77. https://doi.org/10.24002/biota.v16i2.109.
Mawardi, Nazulis. Z dan K. Kajian proses biosorpsi timbal(ii) oleh biomass alga. Bionatura J Ilmu Hayati Dan Fis 2014; 16:114–8.
Mawardi, Rahmi Khairun Nisa. Optimasi Tanah Napa sebagai Adsorben Ion Logam Kromium (IV). Chem J 2013; 2:80–5.
Mawardi, Sanjaya H, Frisiananda V. Penyerapan Logam Krom dalam Limbah Cair Laboratorium Kimia Menggunakan Adsorben Tanah Napa. Chem J State Univ Padang 2013; 2:20–4.
Mawardi, Sanjaya H, Maliki A. Pengaruh ion logam Cd (II) terhadap adsorpsi ion logam Pb (II) dengan adsorben tanah napa. Chem J State Univ Padang 2013; 2:29–33.
Radovanović D, Dikić J, Štulović M, Kamberović Ž. for Wastewater Treatment Process: A Kinetic Approach 2023.
Sarma U, Hoque ME, Thekkangil A, Venkatarayappa N, Rajagopal S. Microalgae in removing heavy metals from wastewater – An advanced green technology for urban wastewater treatment. J Hazard Mater Adv 2024; 15:100444. https://doi.org/10.1016/j.hazadv.2024.100444.
Şengil IA, Özacar M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. J Hazard Mater 2009; 166:1488–94. https://doi.org/10.1016/j.jhazmat.2008.12.071.
Tunali S, Çabuk A, Akar T. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 2006; 115:203–11. https://doi.org/10.1016/j.cej.2005.09.023.
Vijayaraghavan K, Jegan J, Palanivelu K, Velan M. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere 2005; 60:419–26.
Wood JM, Wang HK. Microbial resistance to heavy metals: Some microorganisms have developed strategies for combating effects of toxic inorganics, and several may prove useful for their removal from wastewater. Environ Sci Technol 1983; 17:582–90.
Yan C, Li G, Xue P, Wei Q, Li Q. Competitive effect of Cu (II) and Zn (II) on the biosorption of lead (II) by Myriophyllum spicatum. J Hazard Mater 2010; 179:721–8. https://doi.org/10.1016/j.jhazmat.2010.03.061.
Zhang Z, Chen Y, Klausen LH, Skaanvik SA, Wang D, Chen J, et al. The Rational Design and Development of Microalgae-Based Biohybrid Materials for Biomedical Applications. Engineering 2023; 24:102–13.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nurul Aulia, Mawardi Mawardi

This work is licensed under a Creative Commons Attribution 4.0 International License.






















